mongomotor Documentation
Release 0.1

Juca Crispim

March 20, 2015

Contents

Installation

MongoMotor usage

2.1 Defining documents
22 Addingdata Lo
23 Accessingdata oo

Licence
Contributing

Documentation translations

AN N L

13

mongomotor Documentation, Release 0.1

MongoMotor is a tiny integration of MongoEngine, a document-object mapper for python and mongodb, with Motor,
an asynchronous driver for mongodb built on top of tornado’s mainloop

Using MongoMotor you can define your documents as you already do with MongoEngine, use all query niceties you
already know and do all db operations asynchronously using Motor.

Contents 1

http://docs.mongoengine.org/en/latest/index.html
http://motor.readthedocs.org/en/stable/

mongomotor Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

Straight-forward installation, using pip:

S pip install mongomotor

And that’s it!

mongomotor Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

MongoMotor usage

To use MongoMotor is very similar to use of MongoEngine. To define your documents there’s no difference, except
on import. This is why we’ll use the same example used on mongoengine’s tutorial. We’ll create a simple thumblelog.

2.1 Defining documents

To begin, lets define the following documents:

In the imports here we change °~ "mongoengine’ to ' 'mongomotor '

from mongomotor import connect, Document, EmbeddedDocument

from mongomotor.fields import (StringField, ReferenceField, ListField,
EmbeddedDocumentField)

First creating the conection with database
connect ('mongomotor—-test")

Here the documents are the same used in mongoengine's tutorial
class User (Document) :

email = StringField(required=True)

first_name = StringField(max_length=50)

last_name = StringField (max_length=50)

class Comment (EmbeddedDocument) :
content StringField()
name = StringField(max_length=120)

class Post (Document) :
title = StringField(max_length=120, required=True)
author = ReferenceField (User)
tags = ListField(StringField (max_length=30))
comments = ListField (EmbeddedDocumentField (Comment))

meta = {'allow_inheritance': True}

class TextPost (Post) :
content = StringField()

mongomotor Documentation, Release 0.1

class ImagePost (Post):
image_path = StringField()

class LinkPost (Post) :
link_url = StringField()

Now, the usage is practically the same of mongoengine. Lets see:

2.2 Adding data

To add a new document to database, we’ll do everything as with mongoengine, but with the difference that when we
use the save() method, we use the keyword yield

author = User (email="'niceguylexample.com', first_name='Nice', last_name='Guy')
yield author.save()

postl = TextPost (title='Fun with MongoMotor', author=author)
postl.content = 'Took a look at MongoEngine today, looks pretty cool.'
postl.tags = ['mongodb', 'motor', 'mongoengine', 'mongomotor']

yield postl.save()

post2 = LinkPost (title="MongoMotor Documentation', author=author)
post2.link_url = 'http://mongomotor-ptbr.readthedocs.org/pt/latest/"'
post2.tags = ['mongomotor']

yield post2.save()

2.3 Accessing data

Now we already have some posts we can access them. Again, it’s like with mongoengine, except we use yield when
accessing database:

Here listing all posts that inherited from Post
for post_future in Post.objects:

post = yield post_future

print (post.title)

Here only TextPost from ' ‘author'’

for post_future in TextPost.objects.filter (author=author):
post = yield post_future
print (post.content)

And here filtering by tags

for post_future in TextPost.objects (tags='mongomotor') :
post = yield post_future
print (post.content)

We could use the method " “to_list() to transform a queryset
into a 1list.
posts = yield TextPost.objects.filter (tags='mongomotor') [:10].to_list ()
for post in posts:
print (post.title)

Note: While it appears that each document is retrieved individually, in fact this is the same behavior of motor’s

6 Chapter 2. MongoMotor usage

http://motor.readthedocs.org/en/stable/api/motor_cursor.html#motor.MotorCursor.fetch_next

mongomotor Documentation, Release 0.1

fetch_index, which, by its instance, retrieve the documents in large batches. Apeser de parecer que cada docu-
mento € recuperado individualmente (por causa deste monte de yield), na verdade é o

When we use get () we also need to use yield, like this:

post = yield TextPost.objects.get (title="'Fun with MongoMotor")

The same to access a ReferenceField

author = yield post.author

to use the method first () which (obviously) returns the first result of the query

post = yield Post.objects.order_by('-title').first ()

or when we delete some document from database:

yield post.delete()

We can use the aggregation methods too, like sum (), count (), average () ...

total_posts = yield Post.objects.count ()
tags_frequencies = yield Post.objects.item_frequencies('tags')

2.3. Accessing data 7

http://docs.mongodb.org/manual/core/cursors/#cursor-batches

mongomotor Documentation, Release 0.1

8 Chapter 2. MongoMotor usage

CHAPTER 3

Licence

MongoMotor is free software, licensed under the GPL version 3 or latter.

mongomotor Documentation, Release 0.1

10 Chapter 3. Licence

CHAPTER 4

Contributing

MongoMotor’s code is hosted on gitlab and there is the issue tracker, too. Feel free to create a fork of the project, open
issues, do merge requests...

11

https://gitlab.com/mongomotor/mongomotor
https://gitlab.com/mongomotor/mongomotor/issues

mongomotor Documentation, Release 0.1

12 Chapter 4. Contributing

CHAPTER 5

Documentation translations

Documentagdo do MongoMotor em portugués

Well, that’s it! Thank you!

13

http://mongomotor.poraodojuca.net/ptbr/

	Installation
	MongoMotor usage
	Defining documents
	Adding data
	Accessing data

	Licence
	Contributing
	Documentation translations

